Dúvidas

denucci@gilbertodenucci.com Arquivo

Medicamentos Utilizados no Tratamento do de Câncer I

Site:

www.gilbertodenucci.com

Homozygous co-deletion of passenger genes with a tumor suppressor gene generates therapeutic vulnerabilities in cancer

Fargeting tumor suppressor genes for cancer therapy - Bioessays 37: 0000-0000, 2015 WILEY Periodicals, Inc. - Fig 02

Hemizygous co-deletion of essential genes with a tumor suppressor gene generates therapeutic vulnerabilities in cancer

Regulation of tumorigenic programming by activation of kinases

Activating genomic alterations of protein and lipid kinases

(A) Activating point mutations in genes coding for kinases lead to the expression of a constitutively activated kinase. Such mutations either lead to an amino acid substitution in the catalytic site, rendering it active; or change the general properties of the protein, for instance by disrupting the interaction with negative regulators, by releasing a mechanism of autoinhibition within the kinase itself, or by inducing constitutive dimerization. Last, they can cause changes in the splicing of the mRNA. Point mutations are the most common mechanism of kinase activation. (B) Chromosomal amplification of a region containing a kinase leads to its increased transcription and the production of an increased amount of protein in the cell. Consequently, the downstream pathway becomes overactivated. (C) Chromosomal alterations such as translocations or deletions can localize a kinase gene in proximity to another gene and lead to the expression of a constitutively activated chimeric or truncated kinase, or deregulate the expression of the kinase by putting it under the control of another promoter.

Potential therapeutic combinations to overcome resistance to BRAF inhibitors

Example of known mechanisms of kinase activation in cancer

Activation mechanism	Kinases
Point mutations	ACVR1B, ACVR2B, AKT1, ALK, ALPK2, ATM, BRAF, CDK12, CDK4, EGFR, EPHA2, ERBB2, ERBB3, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, JAK2, KIT, MAP2K1, MAP3K1, MAP4K3, MET, MTOR, PIK3CA, SGK1, STK19, TGFBR2
Gene amplification	CDK4, CDK6, CRKL, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FLT3, IGF1R, KIT, MET, PAK1, PDGFRA, PIK3CA, PRKCI
Gene amplification or fusion of a kinase ligand	FGF19 (FGFR4), HGF (MET), NRG1 (ERBB3), VEGFA (VEGFR)
Gene fusions	ALK, ABL1, BRAF, EGFR, FGFR1, FGFR2, FGFR3, FGR, JAK2, MET, NTRK1, NTRK2, NTRK3, PDGFRA, PDGFRB, PIK3CA, PRKACA, PRKCA, PRKCB, RAF1, RET, ROS1, SYK

MicroRNA biosynthesis. Biosynthesis of miRNAs begins with transcription of the encoded genes by RNA polymerase II

Aberrant expression of miRNAs plays a critical role in anti-cancer drug resistance in lung cancer.

The role of miRNAs as tumour suppressor genes and oncogenes. While regulatory RNAs have not been considered an important class of tumour suppressor genes or oncogenes, the ability of miRNAs to act in either capacity is strengthened by evidence, demonstrating that miRNAs are dysregulated in diverse tumour types, gain or loss of miRNA function as a result of deletions, amplifications or mutations, in addition to the tumoursuppressing and tumour-promoting activities of miRNAs in vivo. In cancer, loss of the tumour-suppressive function of miRNAs leads to expression of target oncogenes, while increased expression of oncogenic miRNAs (oncomirs) can repress tumour suppressor genes.

Blockade of CTLA-4 or PD-1 signalling in anti-cancer immunotherapy:

The T cell priming phase is schematically depicted on the left site. T cells engage APCs, such as dendritic cells (DCs) via their t-cell receptor (TCR). Recognition of the cognate MHC/peptide complex by the TCR results in the intracellular transmission of an activating signal in the T cell, which is complemented by a co-activating signal provided by the CD28/B7 interaction. In order to down-modulate T cell priming and expansion CTLA-4 is up regulated on activated T cells after 2-3 days and competes with CD28 for B7. CTLA-4 blocking antibodies can therapeutically inhibit the coinhibitory signal provided by CTLA-4. On the right site the effector phase is outlined. During this phase immune effector function can be dampened by PD-1/PD-L1 interaction. PD-1 or PD-L1 blocking antibodies can therapeutically inhibit the coinhibitory signal provided by the PD-1/PD-L1 interaction and restore effector function in tumour resident effector T cells.

Schematic depiction of the mechanisms of action of PD-1 and CTLA-4 checkpoint inhibitors

Schematic depiction of PD-1 induced immunosuppression

Overview of phase I trials including anti-PD-1 or -PD-L1 monoclonal antibodies in metastatic melanoma.

Target	Agent	n	ORR%	CR	OS	
					1 yr	2 yr
PD-1	Pembrolizumab	135	32%	9%	81%	n.a.
	(10 mg/kg q2, 10 mg/kg q3, 2 mg/kg q3)					
	Nivolumab + peptide vaccine	87	25%	2%	n.a.	n.a.
	(1, 3, 10 mg/kg q2)					
	Nivolumab	107	31%	?	62%	43%
	(0.1, 1, 3, 10 mg/kg q2)					
					PFS 24 weeks	
PD-L1	MPDL3280A	45	28%	?	41%	
	(0.3, 1, 3, 10, 20 mg/kg q2)					
	BMS-936559	52	17%	6%	42%	
	(0.3, 1, 3, 10 mg/kg q2)					

Illustration of the regulation of apoptosis by p53 via MOMP

Illustration of the regulation of necroptosis by p53 via mitochondrial PTP opening

Illustration of the regulation of the cell death decision by p53 via MOMP and PTP opening. In response to DNA damage, p53 mediates apoptosis through MOMP

Histone methylation and its modifiers

Overview of the molecular mechanisms underlying regulation of signaling pathways by methylation modifiers

Regulation of NF-kB signaling pathways by methylation modifiers

Methylation modifiers and MAPK signaling pathways

Regulation of AKT signaling pathways by PRMT1

Regulation of Wnt/b-catenin signaling pathways by methylation modifiers.

Representation of E2F-1 (A), pRB (B), NFjB (C) and p53 (D) highlighting their various protein domains and sites of arginine and lysine methylation. The 'writers', 'readers' and 'erasers' of these methyl marks are also indicated beneath each diagram, and are colour coded for clarity.

Cell signalling pathways influenced by E2F-1, pRB, NFjB and p53

(A) Under conditions of mitogenic signalling pRB is inactivated by CDK-mediated phosphorylation events, resulting in the release of E2F-1 and the transcription of target genes associated with cell cycle progression. Under these conditions p53 is sequestered and poly-ubiquitinated by MDM2, resulting in its degradation. NFjB can also stimulate cell cycle progression via inhibition of pRB, although this is usually driven by inflammation

Cell signalling pathways influenced by E2F-1, pRB, NFjB and p53

(B) DNA damage stimulates the activity of the sensor kinases ATM and ATR, resulting in the phosphorylation of downstream targets. This leads to the activation and stabilization of p53 and E2F-1, which can drive cell cycle arrest or apoptosis depending on the nature and severity of the damage sustained. For example, p53 can drive expression of the CDK inhibitor p21, which will cause pRB activation and cell cycle arrest. Alternatively, p53 and E2F-1 can both upregulate the expression of pro-apoptotic target genes or genes involved in DNA repair. During inflammation, NFjB translocates to the nucleus and can upregulate target genes involved in the inflammatory response, as well as inducing p53-dependent apoptosis under some circumstances.

Cell signalling pathways influenced by E2F-1, pRB, NFjB and p53

(C) Overview of methylation marks seen on E2F-1, pRB, NFjB and p53 in stressed and unstressed cells, and the outcome these modifications have on transcription.

Schematic representation of molecular alterations in castration resistant prostate cancer

Androgen deprivation of prostate cancer: Leading to a therapeutic dead end - Cancer Letters 367 (2015) 12–17 – Fig 0

Overview of the systematic approach to identify and validate new cancer drug targets.

T cell activation is a multiplesignal process

Tumours can express co-inhibitory and co-stimulatory ligands

Immunological targets currently in clinical or preclinical development

Immunological pathway	Examples in clinical trials	Most advanced stage of clinical development	
CTLA4	Ipilimumab	FDA approved	
	Tremelimumab	Phase III	
PD1-PDL1	Pembrolizumab (PD1)	FDA approved	
	Nivolumab (PD1)	FDA approved	
	Atezolizumab (formerly MPDL3280A) (PDL1)	Phase III	
	MEDI4736 (PDL1)	Phase III	
	Avelumab (PDL1)	Phase I	
	PDR001 (PD1)	Phase I	
TNF and TNFR superfamilies			
4-1BB–4-1BB ligand	Urelumab, PF-05082566	Phase II	
OX40–OX40 ligand	MEDI6469	Phase II	
GITR	TRX518	Phase I	
CD27	Varlilumab	Phase II	
TNFRSF25-TL1A		Preclinical	
CD40–CD40 ligand	CP-870893	Phase I	
HVEM-LIGHT-LTA		Preclinical	
HVEM-BTLA-CD160		Preclinical	
IgSF			
LAG3	BMS-986016	Phase I	
TIM3		Preclinical	
Siglecs		Preclinical	
B7 and CD28-related proteins			
ICOS-ICOS ligand		Preclinical	
B7-H3	MGA271	Phase I	
B7-H4		Preclinical	
VISTA		Preclinical	
HHLA2-TMIGD2		Preclinical	

Immunological targets currently in clinical or preclinical development

Immunological pathway	Examples in clinical trials	Most advanced stage of clinical development
Butyrophilins, including BTNL2		Preclinical
CD244-CD48		Preclinical
TIGIT and PVR family members		Preclinical
Natural killer cell targets		
KIRs	Lirilumab	Phase II
ILTs and LIRs		Preclinical
NKG2D and NKG2A	IPH2201	Phase I
MICA and MICB		Preclinical
CD244		Preclinical
Suppressive myeloid cells		
CSF1R	Emactuzumab	Phase I
Soluble mediators		
IDO	INCB024360	Phase II
ΤGFβ	Galunisertib	Phase I
Adenosine-CD39-CD73		Preclinical
CXCR4-CXCL12	Ulocuplumab, BKT140	Phase I/II*
Other		
Phosphatidylserine	Bavituximab	Phase II/III
SIRPA-CD47	CC-90002	Phase I
VEGF	Bevacizumab	FDA approved
Neuropilin	MNRP1685A	Phase I

Immunoregulatory receptors expressed on the cell surface of regulatory T cells

Regulatory T cell		Ligands	Tumor Expression	Refs
	PD1 CTLA4	PDL1	Melanoma, renal cell, head and neck, cervical, glioblastoma, bladder, oesophageal, breast, hepatocellular, Hodgkin lymphoma, mediastinal large B-cell lymphoma, among others	189, 196, 223, 230-232
	TNFRSF25 GITR	PDL2	Oesophageal, ovarian, pancreatic, hepatocellular, breast, Hodgkin, mediastinal large B-cell lymphoma, among others	233–238
	4-1BB OX40	B7-H3	Prostate, renal cell, non-small cell lung, pancreatic, gastric, ovarian, colorectal, urothelial cell, among others	239–246
	CD27 Neuropilin	B7-H4	Breast, renal cell, ovarian, oesophageal, gastric, pancreatic, melanoma, among others	247–257
0000000	VEGFR	HHLA2	Breast, lung, thyroid, melanoma, pancreas, ovary, liver, bladder, colon, prostate, kidney, oesophagus	129
	LAG3	Galectins	Non-small cell lung, colorectal, gastric, among others	258–261
	CD25	CD30	Hodgkin lymphoma, embryonal, anaplastic large cell lymphoma	262
	0025	CD70	Non-Hodgkin lymphoma, renal cell	263, 264
		ICOSL	Glioblastoma, melanoma	265, 266
		CD155	Kidney, prostate, pancreatic, glioblastoma	267

Activating and inhibitory receptors on natural killer cells.

Immunosuppressive factors in the tumour microenvironment

Anticancer Medications and their Targets

Drugs	Targets								
	VEGF Inhibitors								
Axitinib	VEGF								
Bevacizumab	VEGF								
Cabozantinib	VEGF, c-KIT, FLT-3, RET, MET, TRKB, AXL, TIE-2								
Pazopanib	c-KIT, PDGF, VEGF, c-Fms, FGFR, Itk, Lck								
Ramucirumab	VEGF								
Regorafenib	c-KIT, ABL, PDGF, VEGF, FGFR, RAF, BRAF, EPHR, RET, TIE-2, DDR2, Trk2A, SAPK2, PTK5								
Sorafenib	c-KIT, VEGF, PDGF, FLT-3, RAF, BRAF, p38-alpha								
Sunitinib	c-KIT, VEGF, PDGF, FLT-3, CSF-1R, RET								
Vandetanib	EGFR, VEGF, BRK, SRC-kinases, EPH-Kinases, RET, TIE-2								
Ziv-aflibercept	VEGF								
	EGFR Inhibitors								
Afatinib	EGFR (Erb1), HER2 (Erb2), HER4 (Erb4)								
Erlotinib	EGFR (Erb1)								
Gefitinib	EGFR (Erb1)								
Lapatinib	EGFR (Erb1), HER2 (Erb2)								
Vandetanib	EGFR, VEGF, BRK, SRC-kinases, EPH-Kinases, RET, TIE-2								
	mTOR Inhibitors								
Sirolimus	mTOR								
Everolimus	mTOR								
Temsirolimus	mTOR								
	BCR-ABL Tyrosine Kinase Inhibitors								
Bosutinib	BCR-ABL, SCR (SRC, LYN, HCK), c-KIT, PDGF								
Dasatinib	PDGF, c-KIT, BCR-ABL, SRC kinases								
Imatinib	PDGF, c-KIT, BCR-ABL								
Nilotinib	PDGF, c-KIT, BCR-ABL								
Ponatinib	PDGF, c-KIT, FLT-3, BCR-ABL, FGFR, EPHR, SRC kinases, RET, TIE-2								

Summary of the various immune suppression activities by cancer cells and the cancer microenvironment. Actions that directly trigger immune suppression are boxed

The GnRH activating pathways

Schematic depiction of the EGFR gene and the mutations associated with sensitivity and resistance to drugs

Schematic depiction of the EML-4–ALK fusion protein

Targeted therapies for treatment of non-small cell lung cancer - recent advances and future perspectives - Int J Cancer - Article version: 30.10.2015 - Fig 02

Schematic depiction of tumour angiogenesis signalling pathways

Frequent immune-related adverse events reported with immune checkpoint inhibitors.

Organ	Adverse events
Dermatological	Pruritus, rash, vitiligo, urticaria, alopecia, pruritic rash, macular rash, hypopigmentation, erythema, erythematous rash
Endocrine	Hypothyroidism, hyperthyroidism, hypopituitarism, hypophysitis, adrenal insufficiency
Gastrointestinal	Diarrhoea, colitis, hepatitis, pancreatitis
Pulmonary	Pneumonitis, pulmonary oedema
Ocular	Uveitis, episcleritis

Some clinically relevant drug efflux transporters of the ATP binding cassette (ABC) family

Protein	Gene name	Polarized localization (in MDCK or kidney cells)	Typical substrates	Inhibitors
MDR1(P-gp)	ABCB	Apical	Vinca alkaloids, Taxanes, Doxorubicin, Mitoxantrone, Etoposide	Verapamil, Cyclosporine, GF120918, Amiodarone
MRP1, MRP2	ABCC	Basolateral, Apical	Etoposide, Vincristine, Doxorubicin, Methotrexate	Cyclosporine, Indomethacin, Probenecid
MRP3	ABCC	Basolateral	Etoposide, Teniposide, Methotrexate, Vincristine	Benzbromarone, Indometha- cin, Probenecid
BCRP	BCRP ABCG Apical		Mitoxantrone, Doxorubicin, Daunorubicin, Camptothecin, Etoposide	GF120918, Pantoprazole, Fumitremorgin

Structures of ABC transporter family.

A) P-gp, with 1280 amino acids, is consisting of two transmembrane domains (TMDs) and two nucleotidebinding domains (NBDs); B) MRP1 (1531 amino acids), MRP2 (1545 amino acids) and MRP3 (1527 amino acids) have two TMDs, two NBDs and an extra Nterminal extension (TMD0) with five transmembrane segments connected with a cytoplasmic linker (L0); C) MRP4 (1325 amino acids) and MRP5 (1436 amino acids) both consist of two TMDs and two NBDs; D) BCRP, with 655 amino acids, contains only one TMD and one NBD. Out and In represent extracellular and cytoplasmic, respectively

Regulation of gene expression by histone acetylation

Mechanisms of action of histone deacetylase inhibitors

Classification of HDAC

Group	Class	Name	Location in cell	Location in body				
Classical (Zn dependent)	Class I (Rpd3)	HDAC1 HDAC2 HDAC3 HDAC8	Nucleus	Ubiquitous				
	Class IIa (Hda1)	HDAC4 HDAC5 HDAC7 HDAC9	Nucleus/ cytoplasm	Tissue specific				
	Class IIb (Hda1) Class IV (Rpd3/Hda1)	HDAC6 HDAC10 HDAC11	Cytoplasm Nucleus/ cytoplasm	Tissue specific Tissue specific				
NAD dependent	Class III	SIRT (1-7)	Nucleus/ cytoplasm					
HDAC=Histone deacetylase, NAD=Nicotinamide adenine dinucleotide,								

Summary of HDACI

Classification	Drug	HDA	C class	specificity	Rout	e of administration	Plasma half-life	Dosage
Short chain fatty acids	Sodium butyrate	I, II			IV		9-18 h	
-	Phenylbutyrate	1, 11			IV			
	Valproic acid	1, 11			Oral,	IV		50-60 mg/kg/day
Second generation								
Hydroxamic acids	Vorinostat (SAHA)	I, II, I	V		Oral		91-127 min	200 mg twice a day
-	Belinostat (PXD101)	I, II, I	V		Oral,	V	0.3-1.3 h	1 g/m ² IV D1-D5
	Panabinostat (LBH-589)	I, II			Oral		16 h	20 mg thrice a week
Cyclic peptides	Depsipeptide	I, II			IV, or	al	3 h	14 mg/m ² IV
Synthetic benzamides	Entinostat (MS-275)	Ĺ			Oral		60-150 h	5 mg once a week
-	Mocetinostat (MGCD0103)	HDA	C1		Oral		6-13 h	85 mg thrice a week
HDAC=Histone deacetvlase	e. SAHA=Suberovlanilide hvdro	xamic a	acid. HD	ACI=Histone	deacetv	lase inhibitors. I∀=Intra	venous	

Clinical trials of vorinostat in combination therapy in patients with hematologic malignancies

Disease/phase Relapsed or refractory multiple myeloma (VANTAGE 088) ^[53] /(Phase III)	Regimen Bortezomib with oral vorinostat (400 mg) or placebo once-daily on days 1-14	Number of patients 317 vorinostat group, 320 placebo group	PFS 7.63 months 6.83 months	Efficacy HR: 0·77 95% CI, 0·64-0·94; (<i>P</i> =0·0100)		
Relapsed lymphoma ^[54] /(Phase I)	Vorinostat (escalating doses 400-700 mg BD for 5 days with RICE D3-D5	29	Responses observed in 19 of 27 evalual patients (70%) including 8 Cru			
AML/MDS ^[55] /(Phase II)	Vorinostat 500 mg TDS D1-D3 with idarubicin 12 mg/m ² D4-D6 and cytarabine 1.5 g/m ² D4-D7	D1-D375Induction mortality 4%2 D4-D6ORR 85% (including CR 76%,D4-D7incomplete platelet recovery 947 weeks, OS 82 weeks				
Elderly AML ^[57] /(Phase II)	Vorinostat 400 mg OD D1-D9; gemtuzumab 3 mg/m² on D8	31	CR 6 out of 31 (CRp 1 out of 31 Median OS in re 131 days in non	19.4%) (3.2%) esponders 553 days versus responders (<i>P</i> =0.0026)		
Prevention of GVHD after allogenic HSCT ^[58] /(Phase I/II)	Mycophenolate mofetil 1 g TDS D0-D28; tacrolimus 0.03 mg/ kg/day D3-D100; vorinostat 100/200 mg BD 10 days before HSCT until D100	50	The cumulative GVHD by day 1	incidence of grade 2-4 acute 00 was 22% (95% Cl, 13-36)		

AML=Acute myeloid leukemia, MDS=Myelodysplastic syndrome, GVHD=Graft versus host disease, RICE=Rituximab to the ifosfamide-carboplatin-etoposide, TDS=Thrice a day, HSCT=Hematopoietic stem cell transplant, ORR=Overall response rate, Cru=Complete response/unconfirmed, CR=Complete remission, CRp=Complete remission with incomplete platelet recovery, EFS=Event free survival, OS=Overall survival

Trials of vorinostat in combination therapy in patients with solid tumors

Disease	Phase	Regimen	Number of patient	Efficacy
Metastatic breast cancer ^[61]	1/11	Vorinostat 200/300 mg BD (D1-D3, D8-D10, D15-D17) with paclitaxel 90 mg/m ² on D2, D9, D16 and bevacizumab 10 mg/kg D2 and D16 q 28 days	54	ORR: 24/54 (55%)
Hormone therapy resistant breast cancer ^[62]	П	Vorinostat 400 mg/day for 3 weeks in 28 day cycle and tamoxifen 20 mg/day	43	ORR: 19% Clinical benefit rate 40%
Refractory colorectal cancer ^[63]	II	Vorinostat 800 or 1400 mg/day for 3 days and 5 FU and LV on D2 and D3 q 2 weeks	Low dose: 15 High dose: 43	2 month PFS rate Low dose: 8/15 (53%) High dose: 23/43 (53%)
Gastrointestinal carcinoma. PRAVO ^[64]	Ι	Pelvic radiation 30 Gy in 3 Gy/day fractions over 2 weeks, and escalating dose of vorinostat 100-400 mg/day	16	Well tolerated, MTD of vorinostat with radiation 300 mg OD

PRAVO=Pelvic Radiation and Vorinostat, FU=Fluorouracil, LV=Leucovorin, ORR=Overall response rate, PFS=Progression-free survival, MTD=Maximum tolerated dose

Trials of panabinostat and belinostat

Phase	Regimen	Number of patients	Efficacy
11	Panabinostat 20 mg oral three	13	SD: 7
	times a week		Median PFS: 3.6 months
			(95% CI, 1.8-5.8)
Ш	Panabinostat	55	ORR: 34.5% (1 near CR, 18
	Dexamethasone		PR) clinical benefit rate 52.7%
	Bortezomib		
II	Belinostat: 1 g/m ² IV on days	32	EOC: SD 9/15 patients
	1-5 of a 21-day cycle		LMP: PR 2/12 patients
1/11	Belinostat 1000 mg/m ² days 1-5	25 (Phase I)	72% disease control. Four
	with 75 mg/m ² doxorubicin on	20 (Phase II)	objective responses one CR,
	day 5 in a three-week schedule		and 25 patients had SD)
	Phase II II II	Phase IIRegimen Panabinostat 20 mg oral three times a weekIIPanabinostat Dexamethasone BortezomibIIBelinostat: 1 g/m² IV on days 1-5 of a 21-day cycleI/IIBelinostat 1000 mg/m² days 1-5 with 75 mg/m² doxorubicin on day 5 in a three-week schedule	Phase IIRegimen Panabinostat 20 mg oral three times a weekNumber of patients 13IIPanabinostat 20 mg oral three times a week13IIPanabinostat Dexamethasone Bortezomib55IIBelinostat: 1 g/m² IV on days 1-5 of a 21-day cycle32I/IIBelinostat 1000 mg/m² days 1-5 with 75 mg/m² doxorubicin on day 5 in a three-week schedule25 (Phase I) 20 (Phase II)

EOC=Epithelial ovarian cancer, LMP=Low malignant potential, IV=Intravenous, PFS=progression-free survival, CI=Confidence interval, ORR=Overall response rate, CR=Complete response, PR=Partial response, SD=Stable disease, PANORAMA=PANabinostat ORAI in Multiple myelomA

Trials of mocetinostat and entinostat

Disease	Phase	Regimen	Number of patient	Efficacy
Relapsed classical Hodgkin lymphoma ^[74]	II	Mocetinostat 85 mg/110 mg thrice a week in 28 day cycle	51	Disease control rate 7/28 (25%) in 85 mg group 8/23 (35%) in 110 mg group
Relapsed/ refractory MDS/AML ^[75]	II	5 AZA 75 mg/m ² s/c for 7 days; mocetinostat 35 mg 3 times a week beginning on D5	MDS 28 AML 38	ORR MDS 61%, AML 32% Median OS MDS 12.9 months, AML 5.1 months
Recurrent/ metastatic breast cancer (ER positive) ^[77]	II	Entinostat 5 mg once a week with exemestane 25 mg/day (EE) or Exemestane and placebo (EP)	130	Median PFS EE: 4.3 months EP: 2.3 months HR: 0.73 <i>P</i> =0.055

ER=Estrogen receptor, MDS=Myelodysplastic syndrome, AML=Acute myeloid leukemia, ORR=Overall response rate, OS=Overall survival, PFS=Progression-free survival, EE=Entinostat and exemestane, EP=Exemestane and placebo, HR=Hazard ratio Map of the major signaling pathways of the EGFR and downstream effectors relevant to cancers. Binding of specific ligands (e.g., EGF, heparin-binding EGF, TGF-a)may generate homodimeric complexes resulting in conformational changes in the intracellular EGFR kinase domain, which lead to autophosphorylation and activation

Map of EGFR pathway showing EGFR tyrosine kinase inhibitor (EGFRI) bypass mechanisms due to downstream EGFRindependent signaling involving mutationsresistant to EGFRI (D1), activating mutations in Raf (D2), Ras (D3), PI3K (D5), and AkT (D6), PTEN loss of function (D4), and enhanced accumulation of internalized EGFR byMDGI (D7)

Map of EGFR pathway showing EGFR tyrosine kinase inhibitor (EGFRI) bypass mechanisms due to compensatory signaling of EGFR transactivation with HER2 (C1), MET(C2), IGF1R (C3), Integrin β1 (C4), and HER3 (C5). In particular, C3, C4 and C5 activates PI3K via IRS1/IRS2, FAK or a PP2-sensitive kinase, and direct interaction respectively

Map of EGFR pathway showing EGFR tyrosine kinase inhibitor (EGFR-I) bypass mechanisms due to alternative signaling of VEGFR2 activation (A1), HER2–METtransactivation (A2), PDGFR activation (A3), IGF1R activation (A4), HER2–HER3 transactivation (A5), HER2–HER4 transactivation (A6), MET–HER3 transactivation (A7), PDGFR–HER3 transactivation (A8), Integrin β1 activation (A9), IL6 activation of IL6R–GP130 complex (A10), and Cox2 mediated activation of EP receptors (A11)

Map of EGFR pathway showing EGFR tyrosine kinase inhibitor bypass mechanisms due to alternative signaling of VEGFR2 activation (A1), HER2–MET transactivation(A2), PDGFR activation (A3), IGF1R activation (A4), HER2–HER3 transactivation (A5), HER2–HER4 transactivation (A6), MET–HER3 transactivation (A7), PDGFR–HER3 trans-activation (A8), Integrin a/ß activation (A9), IL6 activation of IL6R–GP130 complex (A10), and Cox2 mediated activation of EP receptors (A11).

Statistics of the approved, clinical trials, and discontinued multi-target anticancer drugs targeting and not targeting a known cancer drug escape pathway

Drug category	Total no. of multi-target drugs	No. (%) of multi-target drugs pathway targeting a known cancer drug escape	No. (%) of multi-target drugs not targeting any known cancer drug escape pathway
Approved	23	17 (73.9%)	6 (26.1%)
Phase III	20	15 (75.0%)	5 (25.0%)
Phase II	43	27 (62.8%)	16 (37.2%)
Phase I	56	30 (53.6%)	26 (46.4%)
Discontinued	17	6 (35.3%)	11 (64.7%)
Total	159	94 (59.1%)	65 (40.9%)

Cancer escape pathways targeted by the approved, clinical trial, and discontinued multitarget anticancer drugs

Drug class	Targeted cancers	No. of known cancer drug-escape pathways	No. of drug escape regulatory proteins	Drug escape regulatory protein (escape pathway) targeted by multi-target anticancer drugs	No. of multi-target anticancer drugs targeting the bypass protein			Total no. of multi-target drugs targeting/not targeting a known drug escape pathway		
					Approved	Phase III	Phase II	Phase I	Discontinued	
EGFR inhibitor	Lung, pancreatic, colon, head and neck, liver, brain	14	18	HER2 (ErbB) HER3 (ErbB) VEGFR2 (VEGF) IGF1R (IGFR)	2 0 1 0	3 0 0 0	3 5 0 1	5 0 0 0	0 0 0 0	19/0
HER2 inhibitor	Breast	7	11	ALK (ALK) EGFR (ErbB) HER3 (ErbB)	0 2 0	0 3 0	1 3 3	0 5 0	0 0 0	14/1
BCR-Abl inhibito	or Leukemia	13	20	Src (SFK-dependent) Aurora (Aurora) PDGFR(PDGFR & SFK-dependent) Kit (Kit) Fyn (SFK-dependent) Lyn (SFK-dependent) JAK2 (Jak2/Stat5, apoptosis) Flt3 (Flt3)	2 0 2 2 1 0 0 0	0 0 0 0 0 0 0 0	1 2 0 0 1 1 1 0	0 0 0 0 0 0 0 0	2 1 0 0 0 0 0 1	11/2
VEGFR2 inhibito	or GIST, kidney, liver, renal, lung, colon, breast, AML leukemia, solid tumor	20	28	PDGFR (PDGFR) VEGFR3 (VEGF) c-Met (HGFR) FGFR (FGFR) Kit (Kit) EGFR (ErbB) CSF-1R (CSF1R mediated pathways) Heparanase (SFK-RTK) Raf (MAPK)	6 3 1 2 3 1 1 0	4 4 0 4 2 1 1 0 0	3 2 3 2 0 0 1 0	2 5 1 2 2 0 0 0 1	1 0 0 1 0 0 0 0	37/6

Cancer escape pathways targeted by the approved, clinical trial, and discontinued multitarget anticancer drugs (Cont.)

Drug class	Targeted cancers	No. of known cancer drug-escape pathways	No. of drug escape regulatory proteins	Drug escape regulatory protein (escape pathway) targeted by multi-target anticancer drugs	No. of multi-target anticancer drugs targeting the bypass protein			Total no. of multi-target drugs targeting/not targeting a known drug escape pathway		
					Approved	Phase III	Phase II	Phase I	Discontinued	
mTOR inhibitor	Breast, brain, lung, renal, solid tumor	6	7	PI3K (Akt-mTOR)	0	0	4	5	0	9/1
PI3K inhibitor	Breast, brain, NSCLC,	5	5	mTOR (Akt-mTOR)	0	0	4	5	0	12/0
	solid tumor			Akt (Akt-mTOR)	0	0	0	1	0	
				Plk1 (Plk-PTEN-Akt)	0	1	0	0	0	
				HDAC (HDAC-histone H3 acetylation - Akt)	0	0	0	1	0	
Alk inhibitor	Non-small cell lung	7	6	ROS1 (FIG-ROS1)	2	0	0	1	0	6/1
	cancer			c-MET (HGFR)	1	0	0	0	0	-1-
				IGF1R (IGFR)	1	0	0	0	0	
				EGFR (ErbB)	0	0	1	0	0	
				TRK (TRK)	0	0	0	2	0	
				RET (RET)	1	0	0	0	0	
Mek inhibitor	Solid tumor	2	3	Raf (MAPK)	0	0	0	4	0	5/0
				MEKK (MAPK)	0	0	0	1	0	-1-
Kit inhibitor	Solid tumor, melanoma, pancreas	4	5	PDGFR (PDGFR)	4	5	2	1	1	13/1
DNA Topoiso- merase	Breast, head and neck, leukemia, ovary, prostate	10	20	XIAP (Apoptosis)	0	1	0	0	0	1/11

Schematic overview of drugs that bolster NK cell antitumour immunity and their interaction points

Clinical studies evaluating the ability of drugs to bolster NK cell antitumour immunity

Drug	Effect on NK cells	Patient population	Clinical trials (number of active trials)	Comments
Cytokines				
IL-2	TPersistence and expansion; Tcytotoxicity	Melanoma, RCC, AML, neuroblastoma, breast cancer, ovarian carcinoma, Fallopian tube cancer and peritoneal cancer	6 (2)	Some studies combined IL-2 with antitumour mAbs
IL-15	1Persistence and expansion; 1cytotoxicity	Melanoma, RCC, lung cancer, SCC and multiple myeloma	4 (3)	Single-chain recombinant IL-15 and heterodimeric IL-15 used
IL-12 ~	1 1 Cytotoxicity	Healthy volunteers	1 (1)	Lower doses used than initial studies
Cytokines after NK ce	ell infusion			
IL-2	↑Persistence and expansion; ↑cytotoxicity	AML and myelodysplastic syndromes	58 (30)	Lower doses used than initial studies
IL-15	TPersistence and expansion; Tcytotoxicity	AML	3 (2)	Intended to more specifically bolster NK cell antitumour activity compared to IL-2
Checkpoint inhibitors	5			
PD1-specific mAbs	[↑] Cytotoxicity	Solid tumours and multiple myeloma	2 (2)	Used in combination with IPH2102 (lirilumab)
KIR-specific mAbs	[↑] Cytotoxicity	Multiple myeloma, AML, melanoma, lung cancer and peritoneal cancer	9 (4)	IPH2101 and IPH2102 (lirilumab) used
Other immunomodul	atory drugs			
Lenalidomide	↑Persistence and expansion; ↑cytotoxicity	Multiple myeloma, BCL and neuroblastoma	15 (10)	
Tumour-targeting mA	lbs	an Branan Augetelle augene p		
CD20-specific mAbs	[↑] Cytotoxicity	BCL and multiple myeloma	10 (4)	Mostly rituximab but veltuzumab also used
GD2-specific mAbs	↑Cytotoxicity	Neuroblastoma	6 (5)	Several different GD2-specific mAbs are being evaluated
EGFR-specific mAbs	↑Cytotoxicity	SCC	4 (3)	Cetuximab used in all studies
ERBB2-specific mAbs	↑Cytotoxicity	Breast cancer	2 (1)	Trastuzumab used in all studies
Tumour-sensitizing a	gents prior to NK	cell infusion		
Bortezomib	[↑] Cytotoxicity	CLL, RCC, lung cancer, multiple myeloma and sarcoma	1 (1)	Bortezomib administered to sensitize tumours to NK cell TRAIL
Regulatory T cell erac	lication prior to N	IK cell infusion		
IL-2–diphtheria toxin fusion protein	↑Persistence and expansion: ↑cytotoxicity	AML, non-Hodgkin lymphoma and CLL	2 (1)	In one study, IL-2-diphteria toxin fusion protein was combined with pentostatin and rituximab

Clinical studies evaluating the efficacy of adoptively infused NK cells

Method	Patient population	Total number of clinical trials (number of active trials)	Comments				
Non-expanded NK cells							
Autologous NK cells + IL-2	Melanoma, RCC, lung cancer and nasopharyngeal cancer	3 (1)					
Autologous NK cells + IL-15	Neuroblastoma, sarcoma, Wilms tumour and rhabdomyosarcoma	1 (1)	Intended to more specifically bolster NK cell antitumour activity than IL-2				
Allogeneic NK cells + IL-2	AML, multiple myeloma, myelodysplastic syndromes, lymphoma, ovarian carcinoma, melanoma, neuroblastoma, Ewing sarcoma, breast cancer and Fallopian tube cancer	55 (29)	Most data published on adoptive NK cell therapy are from these studies				
Allogeneic NK cells + IL-15	AML and myelodysplastic syndromes	2 (1)	Intended to more specifically bolster NK cell antitumour activity than IL-2				
Expanded NK cells							
Autologous NK cells	CLL, RCC, lung cancer, multiple myeloma, sarcoma, colon cancer, melanoma, neuroblastoma, prostate cancer, ALL and pancreatic cancer	7 (6)	Various expansion methods used, including EBV-LCL and membrane-bound cytokine or 4-1BBL feeder cells; some studies use IL-2 post NK cell infusion				
Allogeneic NK cells	AML, myelodysplastic syndromes, T cell lymphoma and multiple myeloma	11 (8)	Various expansion methods used, including EBV-LCL and membrane-bound cytokine or 4-1BBL feeder cells; some studies use IL-2 post NK cell infusion				
Genetically manipulo	ated NK cells						
CD19 CAR mRNA BCL (expanded NK cells)		2 (2)	Designed to redirect tumour targeting. Haploidentical NK cells expanded with K562 membrane-bound IL-15 or 4-1BBL feeder cells; in Phase II clinical trials				
NK cell lines							
NK-92	AML, multiple myeloma and lymphoma	2 (2)	Off-the-shelf NK cells; in dose- escalating Phase I clinical trials				

Evolution of chimeric antigen receptors

Structural features of chimeric antigen receptors

Second-generation anti-CD19 chimeric antigen receptors used in clinical trials to treat acute lymphoblastic leukaemia

Co-stimulation targeted by monoclonal antibodies

Therapeutic modalities targeting immune regulation of cancer

Modality	General use or utility	Limitations	Examples	Status	Refs
Vaccines	Prime patient immune response to tumour-specific antigens	Heterogeneous tumour antigen composition and expression; prone to be hampered by mechanisms of immune suppression	Vaccines against targets such as gp100, MUC1, MAGEA3	Various approaches in clinical trials	9
Recombinant cytokines	Agonism or blockade of protein–protein immune pathways	Antigenicity; poor pharmacokinetics; high toxicity	GM-CSF, IL-7, IL-12, IL-15, IL-18, IL-21	IL-2 for metastatic melanoma and renal cell carcinoma, and IFNα for the adjuvant therapy of stage III melanoma are approved	8
mAbs	Highly selective agonism or blockade of extracellular protein–protein immune pathways; long half-life; non-immunogenic (human or humanized)	Expensive and time-consuming manufacturing and development costs; challenges in achieving high tumour exposures	mAbs targeted against CTLA4, PD1, PDL1 (T cell checkpoint blockers)	Ipilimumab (CTLA4-specific), nivolumab and pembrolizumab (both PD1-specific) are approved for melanoma; others in clinical development for melanoma, lung cancer, kidney cancer and other diseases	11
Autologous T cells	Tumour-targeted cytotoxicity of extracellular and intracellular tumour-specific antigens	Heterogeneous tumour antigen composition and expression; on-target, off-tumour toxicity	CAR T cells, TCR T cells	None approved, but several in clinical development	10
Small molecules	Uniquely suited for intracellular targets, but also equally applicable to cell surface or extracellular targets	Off-target activities; dose-limiting toxicities; ineffective at blocking protein-protein interactions; require daily dosing	IDO1 and COX2 inhibitors, TLR agonist and chemokine antagonist	Topical imiquimod (a TLR7 and TLR8 agonist) approved for the treatment of basal cell carcinoma; IDO inhibitors in clinical trials	12
Immune function and the immune response to cancer

Small-molecule drug targets to restore cancer immunity in the tumour

Purinergic and PGE₂ signaling in immune cells

Properties of select DNA viruses

	Adenovirus	Vaccinia virus	Herpesvirus	Parvovirus H1
	35 kb	190 kb	154 kb	5 Kb
	70–90 nm	70–100 nm	200 nm	18–28 nm
Baltimore classification	Group I: dsDNA	Group I: dsDNA	Group I: dsDNA	Group II: ssDNA
Family	Adenoviridae	Poxviridae	Herpesviridae	Parvoviridae
Virion	Naked	Complex coats	Enveloped	Naked
Capsid symmetry	Icosahedral	Complex	Icosahedral	Icosahedral
Replication site	Nucleus and cytoplasm	Cytoplasm	Nucleus and cytoplasm	Nucleus and cytoplasm
Cell receptor	CAR	Unknown	HVEM, nectin 1, nectin 2	Sialic acid residues
Nuclear integration		+	+	+
Transgene capacity	++~	+++	+++	N/A
Wild-type virus infects non-replicating cells		- And Barris Barris		ł
Virulence of wild-type virus	+/-	+/-	and Hard College and	+
Antivirals	+	+		
Immunogenicity	C-op all ogding St			+
Haemagglutination				+
Blood-brain barrier penetration				+
Achievable titre (PFU per ml)	1012	10 ⁹	10 ¹⁰	5×10 ⁸
MTD	3×10 ¹²	3×10 ⁹	10 ⁹	N/A

Properties of select DNA viruses

	Reovirus	Coxsackievirus	Seneca Valley Virus	Poliovirus	Measles virus	Newcastle disease virus	Vesicular stomatitis virus
	23 kb	28 48	7 kb	7.5 KB	16 kb		2000 1000 1000 1000 1000
	75 nm	28 nm	25-30 nm	1 30 nm	100-200 nm	100–500 nm	80 nm
Baltimore classification	Group III: ~ dsRNA	Group IV: ssRNA	Group IV: ss(+) RNA	Group IV: ss(+) RNA	Group V: ss(-) RNA	Group V: ss(-) RNA	Group V ss() RNA
Family	Reoviridae	Picornaviridae	Picornaviridae	Picornaviridae	Paramyxoviridae	Paramyxoviridae	Rhabdoviridae
Virion	Naked	Naked	Naked	Naked	Enveloped	Enveloped	Enveloped
Capsid symmetry	Icosahedral	Icosahedral	Icosahedral	Icosahedral	Icosahedral	Helical	Helical
Replication site	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm	Cvtoplasm	Cytoplasm
Cell receptor	Unknown	CAR/ICAM-1/ DAF	Unknown	CD155	SLAM and CD46	Unknown	LDLR
Nuclear integration	+	+	+	+	+	+	+
Transgene capacity	N/A	N/A-	N/A	N/A	+	+	+
Wild-type virus infects non- replicating cells	+		+		建設	-	+
Virulence of wild- type virus	+	+/-	+	-	-	+	+
Antivirals	-	-0			- #64 02.575		
Immunogenicity	-	-	+	+/-	-		- Contraction of the
Haemagglutination	- 11. 12 - 112	+	+	+		THE REAL PROPERTY OF	
Blood-brain barrier penetration	+	-	+	+	-	+	-
Achievable titre (PFU per ml)	10 ⁹	109	N/A	108	1011	10 ⁸	2×10 ¹⁰
MTD	3×10 ¹⁰	109	10 ¹¹ VP per kg	NA	10 ⁹	Initial 10 ⁹ ; subsequent 10 ¹⁰	N/A

Oncolytic viruses can exploit cancer immune evasion pathways

The induction of local and systemic anti-tumour immunity by oncolytic viruses

Mechanisms of viral entry into cancer cells

Oncolytic viruses can target oncogenic pathways

Drug resistance is a complex process that results from one or more specific mechanisms that render cells resistant to anticancer drugs.

The Hallmarks of Cancer

Intracellular Signaling Networks Regulate the Operations of the Cancer Cell

Emerging Hallmarks and Enabling Characteristics

The Cells of the Tumor Microenviroment

Signaling Interactions in the Tumor Microenvironment during Malignant Progression

Therapeutic Targeting of the Hallmarks of Cancer

Self-immolative polymers degrade upon triggering. (a) A polycarbamate depolymerizes via a quinonemethide intermediate. (b) A different polycarbamate depolymerizes via alternating cyclization and elimination. (c) Polyglyoxylate self-depolymerizes to glyoxylic acid.

Light for in vivo imaging and therapy, and light-triggered nanoparticles (NPs). (a) The electromagnetic spectrum of ultraviolet (UV), visible, and infrared (IR) light and of the near-infrared (NIR)-I and NIR-II window for in vivo imaging and phototherapy. (b) Schematic illustration of a metallic NP that can absorb visible or NIR light and dissipate such absorbed light energy as heat (photothermal effect). (c) Schematic illustration of upconversion NPs that can be excited by NIR light to emit UV or visible light.

Barriers to deep tumor penetration. Scheme of the delivery barriers that prevent deep penetration of nanoparticles (NPs) in tumors. The abnormal tumor vasculature, dense collagen matrix, and collapsed vessels in the tumor interior present barriers to NP penetration deep into tumors.

Bioorthogonal reactions for tumor targeting. (a) Examples of bioorthogonal reactions: azide-alkyne cycloaddition and cyclooctene-tetrazine Diels-Alder reaction. (b) Schematic illustration of tumor targeting using bioorthogonal reactions.

New Strategies in Cancer Nanometlicine - Review in Advance first posted online on October 28, 2015. Fig 04

Scheme of nanoparticle (NP)-tethering T cells for adoptive cancer immunotherapy.

A schematic representation of contemporary molecular cancer drug target classes.

Small molecules in clinical trials for traditionally undruggable targets

Experimental therapeutic	Molecular target class	Cancer indication	Development phase
Phosphatases			
LB100	Protein phosphatase 2A inhibitor	Solid tumors	Phase I
RAS superfamily			
KD 032 (Salirasib)	RAS antagonist; inhibits RAS methylation	Colorectal cancer	Phase I
GI-4000	Mutated RAS cancer vaccine	Resected pancreatic cancer, lung	PhaseII
Transcription factors			
CPI-0610	BET inhibition	Myelodysplastic syndromes	Phase I
TEN-010	BET inhibitor	Advanced solid tumors	Phase I
GSK 525762	Bromodomain inhibitor	NUT gene midline carcinoma	Phase I
PRI-724	CBP/β-catenin	Acute myeloid leukemia, chronic myelogenous leukemia	Phase I/II
ARQ-761	E2F1 transcription factor stimulant	Solid tumors	Phase I
SAR405838	HDM2/p53 antagonist	Solid tumors	Phase I
APT O-253	KLA4 activator	Late-stage tumors	Phase I
D S-3032	MDM2	Lymphoma, Solid tumors	Phase I
AM G 232	MDM2-p53	Acute myeloid leukemia, chronic, solid tumors	Phase I
MK-8242	MDM-2	Solid tumors	Phase I
CGM 097	p53/MDM2-interaction inhibitor	Late-stage tumors	Phase I
RG7112 ^b	MDM2-p53	Leukemia, sarcoma	Phase I
HDM201	p53	Hematological malignancies	Phase I
ABT-RTA-408	Nrf2	Metastatic non-small-cell lung cancer, skin	Phase I

Biological agents in clinical trials for traditionally undruggable cancer targets

Experimental			
therapeutic	T argeted mechanism of action	Cancer indication	Development phase
AZD 9150	STAT3	Hematological malignancies	Phase I
Custirsen (OGX-111)	Antisense oligonucleotide (TRPM-2)	Non-small-cell lung cancer, prostate	PhaseIII
DCR-MYC	c-MYC	Hepatocellular carcinoma	Phase I
Imetelstat	Telomeræ oligonucleotide	Hematological malignancies	Phase I
ISIS-EIF4ERX	Antisense oligonucleotide [eukaryotic translation initiation factor 4E (elF4E)]	Non-small-cell lung cancer, prostate	Phase II
MRX34	miR-34 mimic	Hematological malignancies	Phase I
NTO-1151	Ribonuclease inhibitor	Cervical cancer, vaginal cancer	PhaseII
QBI-139	Variant of the human pancreatic ribonuclease 1	Solid tumor	Phase I
TKM-PLK1	RNA Polo-like kinæe 1	Hepatocellular carcinoma	PhaseII

Examples of preclinical inhibitors and activators of cancer-associated phosphatases

Phosphatase	Compound Action		Reference(s)
РРМ			
PP2Cδ (PPM1D or WIP1)	Peptide	Catalytic site inhibitor	27, 92
PP2Cδ (PPM1D or WIP1)	CCT 007093	Catalytic site inhibitor	30
PP2Cδ (PPM1D or WIP1)	SPI-001	Catalytic site inhibitor	29
PP2Cδ (PPM1D or WIP1)	GSK2830371	Allosteric inhibitor	28
PPP		•	
PP2A/CIP2A	Rabdocoetsin B	Transcription inhibitor	93
PP2A/SET	FT Y720	Activator by disruption of	94
		protein-protein interaction	
PP2A/SET	OP449	Activator by disruption of	36
		protein-protein interaction	
PP4	Fostriecin	Catalytic site inhibitor	95
PTP			
PT PN 1 (PT P1B)	M SI - 1436	Allosteric inhibitor	44
PT P-1D (SH P2)	Hydroxyindole carboxylic acid	Catalytic site inhibitor	96, 97
TC-PTP	Mitoxantrone	Allosteric activator	98
CDC25A	Quinones	Catalytic site inhibitor	25, 45
CDC25B	Aminoisoquinolinones	Catalytic site inhibitor	46
PT P4A3 (PRL)	Thienopyridone	Catalytic site inhibitor	99
PT P4A (PRL)	BR-1 and CG-707	Catalytic site inhibitor	100
PT P4A (PRL)	Antibody	Antibody	49, 50
R-PT Pŋ	Peptide	Activator by disruption of	101
		protein-protein interaction	
Eya2	M SL 000544460	Allosteric inhibitor	80, 81

Chemical structures of clinical and experimental metal-based anticancer agents

Schematic drawing of the major intracellular human Cu trafficking pathways.

Organometallic Ru(II) arene complexes.

Examples of cytotoxic coordination and organometallic gold(I) and gold(III) compounds.

Examples of delocalized lipophilic cations (DLCs) including a Au(I) complex.

Rhodamine 123

[Au(d2pypp)₂]Cl

Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin - Molecules 2014, 19, 15584-15610 - Fig 05

Au(I) NHC complexes chloride-[1,3-dimethyl-4,5-diarylimidazol-2-ylidene]gold(I) 1–2 and chloride-[1,3-dibenzylimidazol-2-ylidene]gold(I) 3.

Schematic drawing of the organometallic compound $[(\eta 5-Cp^*)(Ir)(7,8-benzoquinoline)Cl]$.

Au(III) dipeptidedithiocarbamato and Au(I)-thiosugar complexes.

Chemical structures of Halichondrin B and eribulin mesylate.

Mechanism of action of eribulin mesylate.

Summary of poly (ADP-ribose) [pADPr] polymerase 1 (PARP1) structure, function, and proposed contribution to synthetic lethality.

(A) Schematic of PARP1 structure. (B) On binding to damaged DNA, PARP1 undergoes conformation change that increases its catalytic activity, leading to cleavage of NAD and addition of ADP- ribose units to various proteins, including its own automodification domain. Result- ing pADPr polymers (depicted as chains of yellow circles) alter function of proteins that are modified (eg, by decreasing affin- ity of PARP1 for damaged DNA)29 and also recruit additional proteins that bind to polymer noncovalently.30,31 (C-F) Mod- els proposed to explain observed syn- thetic lethality between homologous recombination (HR) deficiency and PARP inhibition. These models emphasize (C) role of PARP1 in base excision repair, (D) recruitment of DNA repair proteins, (E) recruitment of BARD1-BRCA1 complex, and (F) suppression of nonhomologous end joining (NHEJ). AD, automodification domain; BRCT, BRCA1 C-terminal do- main; DBD, DNA binding domain; FA, Fan- coni anemia; NLS, nuclear localization signal; PK, protein kinase; WGR, tyrptophan-glycine-

arginine-rich domain; Zn, zinc finger.

Schematic representation of the effects of platinum compounds on subcellular compartments.

Mitochondria as subcellular targets of platinum complexes.

Agentes Citotóxicos

Agentes Alquilantes Antimetabólitos Produtos Naturais

Agentes Alquilantes

Mostardas nitrogenadas Derivado da metilhidrazina Alguil sulfonado Nitrosuréias Triazenos Complexos de Platina

Mostardas Nitrogenadas

Mecloroetamina Ciclofosfamida Ifosfamida Melfalan Clorambucil

Devidado da metilhidrazina

Procarbazina

Alquil Sulfonado

Busulfan

Nitrosuréias

Carmustina Estreptozotocina Bendamustina

Dacarbazina Temozolomida

Complexos de Platina

Cisplatina Carboplatina Oxaliplatina

Antimetabólitos

Análogos do ácido fólico Análogos de pirimidina Análogos de purina

Análogos do Ácido Fólico

Metotrexato Pemetrexed

Análogos de Pirimidina

Fluouracil Capecitabina Citarabina Gemcitabina 5-aza-citidina Deoxi-5-aza-citidina

Análogos de Purina

Mercaptopurina Pentostatina Fludarabina Clofarabina Nelarabina **Produtos Naturais** Alcalóides da Vinca Taxanos Epipodofilotoxina **Camptotecinas** Antibióticos Equinocandinas Antracenos Enzimas

Alcalóides da Vinca

Vinblastina Vincristina Vinorelbina

Paclitaxel Docetaxel

Epipodofilotoxina

Camptotecinas

Topotecan Irinotecan

Antibióticos

Actnomicina D Daunorubicina Doxorubicina

Equinocandinas

Yondelis

Antracenos

Mitoxantrona Bleomicina

L-asparaginase